Для чего удобнее всего использовать сотовую связь. Как работают сотовые сети

Вряд ли возможно сегодня найти человека, который бы никогда не пользовался сотовым телефоном. Но каждый ли понимает, как работает сотовая связь? Как устроено и работает то, к чему мы все давно привыкли? Передаются ли сигналы от базовых станций про проводам или все это действует как-то иначе? А может быть вся сотовая связь функционирует лишь за счет радиоволн? На эти и другие вопросы попробуем дать ответ в нашей статье, оставив описание стандарта GSM за ее рамками.

В момент, когда человек пытается совершить вызов со своего мобильного телефона, или когда начинают звонить ему, телефон посредством радиоволн подключается к одной из базовых станций (наиболее доступной), к одной из ее антенн. Базовые станции можно наблюдать то там, то тут, взглянув на дома наших городов, на крыши и на фасады промышленных зданий, на высотки, наконец на специально возведенные для станций мачты красно-белого цвета (особенно вдоль автострад).

Станции эти выглядят как прямоугольные коробки серого цвета, из которых в разные стороны торчат разнообразные антенны (обычно до 12 антенн). Антенны здесь работают как на прием, так и на передачу, и принадлежат они оператору сотовой связи. Антенны базовой станции направлены во всевозможные стороны (сектора), чтобы обеспечить «покрытие сетью» абонентам со всех сторон на расстоянии до 35 километров.

Антенна одного сектора в состоянии обслуживать одновременно до 72 звонков, и если антенн 12, то представьте себе: 864 звонка способна в принципе обслужить одна крупная базовая станция одновременно! Хотя обычно ограничиваются 432 каналами (72*6). Каждая антенна соединена кабелем с управляющим блоком базовой станции. А уже блоки нескольких базовых станций (каждая станция обслуживает свою часть территории) присоединяются к контроллеру. К одному контроллеру присоединяется до 15 базовых станций.

Базовая станция в принципе способна функционировать на трех диапазонах: сигнал 900 МГц лучше проникает внутрь зданий и сооружений, распространяется дальше, поэтому именно данный диапазон часто используют в деревнях и на полях; сигнал на частоте 1800 МГц распространяется не так далеко, но на одном секторе устанавливают больше передатчиков, поэтому в городах ставят чаще именно такие станции; наконец 2100 МГц — это сеть 3G.

Контроллеров, конечно, в населенном пункте или районе, может быть несколько, поэтому контроллеры, в свою очередь, присоединяются кабелями к коммутатору. Задача коммутатора — связать сети операторов мобильной связи друг с другом и с городскими линиями обычной телефонной связи, междугородной связи и международной связи. Если сеть небольшая, то достаточно одного коммутатора, если крупная — используются два и более коммутаторов. Коммутаторы объединяются между собой проводами.

В процессе перемещения человека, разговаривающего по мобильнику, по улице, например: идет он пешком, едет в общественном транспорте, или передвигается на личном авто, - его телефон не должен ни на мгновение потерять сеть, нельзя оборвать разговор.

Непрерывность связи получается благодаря способности сети базовых станций очень оперативно переключать абонента с одной антенны на другую в процессе его перемещения от зоны действия одной антенны — в зону действия другой (от соты к соте). Абонент сам не замечает, как перестает быть связан с одной базовой станцией, и подключен уже к другой, как переключается от антенны — к антенне, от станции — к станции, от контроллера — к контроллеру…

При этом коммутатор обеспечивает оптимальное распределение нагрузки по многоуровневой схеме сети, чтобы снизить вероятность выхода оборудования из строя. Многоуровневая сеть строится так: сотовый телефон — базовая станция — контроллер — коммутатор.

Допустим, мы совершаем вызов, и вот сигнал уже добрался до коммутатора. Коммутатор передает наш звонок в сторону абонента назначения — в городскую сеть, в сеть международной или междугородней связи, либо на сеть другого мобильного оператора. Все это происходит очень быстро с использованием высокоскоростных оптоволоконных кабельных каналов.

Далее наш звонок поступает на коммутатор, что расположен на стороне принимающего звонок (вызываемого нами) абонента. В «приемном» коммутаторе уже есть данные о том, где находится вызываемый абонент, в какой зоне действия сети: какой контроллер, какая базовая станция. И вот, с базовой станции начинается опрос сети, находится адресат, и на его телефон «поступает вызов».

Вся цепочка описанных событий, с момента набора номера до момента раздавшегося на принимающей стороне звонка, длится обычно не более 3 секунд. Так мы можем сегодня звонить в любую точку мира.

Андрей Повный

Структурная схема GSM сотового телефона

Структурная схема сотового радиотелефона, работающего в цифровом стан­дарте GSM (рис. 5.3), состоит из аналоговой и цифровой частей, которые обыч­но располагаются на отдельных платах. Аналоговая часть включает в себя прием­ное и передающее устройства, которые по своим характеристикам и построению напоминают описанные выше.

В системах стандарта GSM передатчик и приемник сотового телефона рабо­тают не одновременно. Передача осуществляется только в течение 1/8 длитель­ности кадра. Это значительно уменьшает расход энергии аккумуляторной бата-реи и увеличивает время функционирования как в режиме передачи (разговора), так и в режиме приема (ожидания). Кроме того, заметно снижаются требования к ВЧ-фильтру приемника, выполненному на ПАВ, что делает возможным интегра­цию МШУ со смесителем. Блок сопряжения прием-передача - это электронный коммутатор, подключающий антенну либо к выходу передатчика, либо ко входу приемника, поскольку сотовый телефон никогда не работает на прием и передачу одновременно.

Рис. 5.3. Функциональная схема радиотелефона цифрового стандарта GSM

Принимаемый сигнал после прохождения входного полосового фильтра уси­ливается МШУ и поступает на первый вход первого смесителя. На второй вход поступает сигнал гетеродина f прм с синтезатора частот. Сигнал первой промежу­точной частоты f пр, проходит через полосовой фильтр на ПАВ и усиливается уси­лителем первой промежуточной частоты УПЧ1, после чего поступает на первый вход второго смесителя. На второй его вход поступает сигнал гетеродина f г с ге­нератора частот. Полученный сигнал второй промежуточной частоты f пр2 фильт­руется полосовым фильтром на ПАВ, усиливается усилителем УПЧ2, демодулируется и поступает на аналого-цифровой преобразователь (АЦП), где преобразу­ется в сигнал, необходимый для работы цифрового логического блока, выполненного на центральном процессоре CPU.

В режиме передачи информационный цифровой сигнал, сформированный в логическом блоке, поступает на 1/О-генератор, где происходит формирование модулирующего сигнала. Последний поступает в фазовый модулятор, с которого сигнал f фм поступает в смеситель. На второй вход смесителя поступает сигнал f прд с синтезатора частот. Полученный сигнал f с1 через полосовой фильтр поступает в усилитель мощности (УМ), управляемый с помощью центрального процессора CPU. Усиленный до необходимого уровня сигнал f с1 через полосовой керамиче­ский фильтр поступает к антенне А и излучается в окружающее пространство.

Цифровая логическая часть сотового телефона (рис. 5.4) обеспечивает фор­мирование и обработку всех необходимых сигналов. Сердцевиной этой важной части цифрового телефона является центральный процессор CPU. Он выполнен в виде СБИС на микромощных полевых транзисторах со структурой «металл-ди­электрик-полупроводник» (МДП или MOS).

В состав цифровой части телефона входят:

Цифровой сигнальный процессор (CPU) со своей оперативной и постоян­ной памятью, осуществляющий управление работой сотового телефона. CPU телефонов несколько проще, чем микропроцессоры компьютеров, но тем не менее являются сложнейшими микроэлектронными изделиями.

Аналого-цифровой преобразователь (АЦП), который преобразует анало­говый сигнал с выхода микрофона в цифровую форму. При этом вся после­дующая обработка и передача сигнала речи производится в цифровой фор­ме, вплоть до обратного цифро-аналогового преобразования.

Кодер речи, осуществляющий кодирование сигнала речи, имеющего уже цифровую форму, по определенным законам с использованием алгоритма сжатия для сокращения избыточности сигнала. Таким образом осуществляется сокращение объема информации, которую необходимо передавать по радиоканалу связи.

Кодер канала, добавляющий в цифровой сигнал, получаемый с выхода ко­дера речи, дополнительную (избыточную) информацию, предназначенную для защиты от ошибок при передачи сигнала по линии связи. С этой же це­лью информация подвергается определенной переупаковке (перемежению). Кроме того, кодер канала вводит в состав передаваемого сигнала информа­цию управления, поступающего от логической части.

Декодер канала, выделяющий из входного потока данных управляющую информацию и направляющий ее в логический блок. Принятая информация проверяется на наличие ошибок, которые по возможности исправляются. Для последующей обработки принятая информация подвергается обратной по отношению к кодеру переупаковке.

Рис. 5.4. Цифровая и логическая часть мобильного сотового телефона

Декодер речи, восстанавливающий поступающий на него с декодера канала цифровой сигнал речи, переводящий его в естественную форму, со свойст­венной ему избыточностью, но по-прежнему в цифровом виде. Отметим, что для сочетания кодера и декодера, расположенных в одном корпусе ин­тегральной микросхемы, иногда употребляют название кодек (например, кодек речи, канальный кодек).

Цифро-аналоговый преобразователь (ЦАП), преобразующий принятый сигнал речи в аналоговую форму и подающий этот сигнал на вход усилите­ля динамика.

Эквалайзер, служащий для частичной компенсации искажений сигнала из-за многолучевого распространения. Эквалайзер является адаптивным фильтром, настраиваемым по обучающей последовательности символов, входящих в состав передаваемой информации. Этот блок, вообще говоря, не является функционально необходимым и в некоторых случаях может от­сутствовать.

Клавиатура, представляющая собой наборное поле с цифровыми и функ­циональными клавишами для набора номера вызываемого абонента, а так­же команд, определяющих режим работы сотового телефона.

Дисплей, служащий для отображения различной информации, предусмот­ренной устройством и режимом работы станции.

Блок шифрования и дешифрования сообщений, предназначенный для обеспечения конфиденциальности передачи информации.

Детектор речевой активности (voice activity detector), включающий пе­редатчик на излучение только на те интервалы времени, когда абонент го­ворит. На время паузы в работе передатчика в тракт дополнительно вводит­ся так называвемый комфортный шум. Это сделано в интересах экономного расходования энергии источника питания, а также снижения уровня помех для других станций.

Терминальные устройства, используемые для подключения через специ­альные адаптеры с использованием соответствующих интерфейсов, факс-аппаратов, модемов и др.

SIM-карта (SIM - subscriber identification module, буквально - мо­дуль идентификации абонента) - пластиковая пластина с микросхемой, вставляемая в специальное гнездо абонентского аппарата. В SIM-карте хранятся:

Данные, присваиваемые каждому абоненту: международный идентифика­ционный номер подвижного абонента (IMSI), ключ аутентификации або­нента (Ki) и класс управления доступом;

Временные данные о сети: временные идентификационный номер под­вижного абонента (TMSI), идентификатор области местоположения (LAI), ключ шифрования (Ке), данные о запрещенных для доступа под­вижных сетях;

Данные, относящиеся к обслуживанию: предпочтительный язык обще­ния, уведомления об оплате и перечень заявленных услуг.

Одна из основных задач SIM-карты состоит в обеспечении защиты от несанк­ционированного использования сотового телефона. На уровне абонентского ин­терфейса на SIM-карте записывается персональный идентификационный номер (PIN-номер) длиной от 4 до 8 разрядов, который микропроцессор SIM-карты по­сле включения станции сверяет с номером, набираемым пользователем с помо­щью клавиатуры. Если три раза подряд набран ошибочный PIN-номер, использо­вание SIM-карты блокируется до тех пор, пока абонент не введет 8-разрядный персональный ключ разблокирования (PUK).

Если ошибочный PUK вводится 10 раз подряд, использование SIM-карты пол­ностью блокируется и абонент будет вынужден обратиться к оператору сети.

Кроме того, благодаря SIM-картам имеется возможность звонить не только со своего сотового телефона, но и с любого другого GSM-телефона, достаточно вста­вить SIM-карту в аппарат и набрать личный идентификационный PIN-номер.

5.3 Услуги сотовой связи. Конфиденциальность связи. Фрод в сотовой связи. Биологическая безопасность.

В системах второго поколения пользователю могут быть предоставлены основные и дополнительные услуги связи. Основные услуги связи: телефонная связь, экстренные вызовы, передача коротких сообщений, факсимильная связь. Услуга экстренного вызова позволяет устанавливать абонентской станции речевую связь с ближайшим центром экстренной службы. К дополнительным услугам связи относятся:

· услуги по распознаванию номера;
· переадресация и перенаправление вызова;
· услуги завершения связи (вызов на удержании, вызов с ожиданием и т.п.);
· конференц-связь;
· услуги по учету стоимости переговоров;
· услуги группового соединения;
· услуги по ограничению вызовов и др.

В условиях конкурентной борьбы за абонента операторы крупных сетей стараются внедрять новые услуги. В последнее время были введены такие услуги, как подключение абонента на условиях предоплаты, услуга WAP – доступ в сеть Интернет непосредственно с мобильного терминала, система глобального позиционирования GPS, видеосвязь и др.. Но такие возможности появились с появлением коммуникаторов (смартфонов).

Конфиденциальность связи обеспечивается защитой от несанкционированного доступа к каналам связи. Для этого используются различные методы шифрования. Например в стандарте GSM шифрование осуществляется путем помехоустойчивого кодирования и перемежения и заключается в поразрядном сложении по модулю 2 информационной битовой последовательности и псевдослучайной битовой последовательности, составляющей основу шифра. Повторное применение операции сложения по модулю 2 с той же псевдослучайной последовательностью к зашифрованной инфомационной последовательности восстанавливает исходную информационную битовую последовательность, то есть реалищует дешифрацию шифрованного сообщения (рис.).

Существует еще возможность защиты от подслушивания – это скремлирование (scrambling – перемешивание, перетасовка), являющееся своебразным шифрование путем перестановки участков спектра или сегментов речи, осуществляемое во внешнем по

Рис.5.5. Принцип шифрования и дешифрации информации в стандарте GSM.

отношению к мобильному телефону устройстве с соответствующим дескремблированием на приемном конце.

Фрод (от англ. fraud - обман, мошенничество) - одна из серьезных про­блем сотовой связи. Фрод можно определить как незаконную деятельность, на­правленную на использование услуг сотовой связи без надлежащей оплаты или за счет оплаты этих услуг людьми, такими услугами не пользующимися.

Время от времени мировую и нашу прессу потрясают сообщения о мошенни­чествах в области сотовой связи. Самое неприятное, когда зарегистрированный за кем-то сотовый телефон попадает в руки мошенников, способных обмануть по­ставщиков сотовой связи и бесконтрольно осуществлять переговоры в большом объеме. Порой для этого используются примитивные приемы (например, злост­ные неплатежи), а порой весьма тонкие методы, основанные на прекрасном зна­нии документации по сотовым сетям связи. Практикуется переделка номеров со­товых аппаратов и всевозможная «химия» с шифрами и паролями.

Потери от фрода, даже после многих лет борьбы с ним, достигают несколь­ких процентов от общего объема услуг сотовой связи. К примеру, в 1996 г. в США они составили сумму чуть более 1 млрд долл. при общем доходе от сотовой связи 21 млрд долл. Данные о таких потерях большинство операторов старается не публиковать, и они становятся известными общественности спустя годы после крупных «проколов».

Если у вас появилось подозрение, что кто-то пользуется (явно или неявно) вашим аппаратом, то необходимо немедленно поставить в известность об этом поставщика услуг сотовой связи. Например, такое подозрение может базировать­ся на заметном увеличении объема оплаты услуг сотовой связи по сравнению с привычным для вас уровнем. Если не проконтролировать случившееся, то вы мо­жете неожиданно получить счет на сотни, если не на тысячи долл.. И будете втя­нуты в долгую судебную тяжбу с неясным исходом.

Кроме фрода, огромный ущерб сотовой связи наносит продажа «серых» теле­фонов. Это могут быть приобретенные по дешевке забракованные аппараты, кото­рые затем кустарно доводятся до рабочего состояния - нередко далеко не по всем функциональным возможностям. Такие аппараты доставляют массу хлопот не только их владельцам, позарившимся на дешевизну, но и операторам сотовой связи. Ибо, плохо выполняя (или вообще не выполняя) многие функции, они вы­зывают шквал звонков в службы сервиса.

Подслушивание разговоров по сотовым телефонам - тоже далеко не без­обидная вещь. Особенно уязвимы в этом аналоговые сети. Но и в цифровых се­тях, даже при наличии соответствующего оборудования для кодирования и деко­дирования разговоров, подслушивание их тоже вполне возможно. Об этом стоит помнить, ведя разговоры.

Приемы незаконного использования сотовых те­лефонов разнообразны, хотя и существует мнение о том, что об этом надо знать. Только вот в каком объеме? К примеру, всякому ясно, что сотовый телефон можно использо­вать в качестве очень простого радиовзрывателя. Однако описание пусть даже простой схемы такого применения едва ли можно приветствовать. Соответствую­щие органы мигом могут признать это пособием для террористов. Поэтому, пре­дупредив пользователя о наличии брешей в законном применении сотовых теле­фонов, мы на этом окончим описание этих тонких моментов в применении мо­бильных телефонов.

Биологическая безопасность.

Время от времени появляются сенсационные новости о развитии раковых опухолейот использовании сотового телефона. Где-то в США вроде были даже судебные процессы по этому поводу. Встречаются и сообщения о взрывах авто­стоянокво время заправки автомобилей, о сбившихся с курса самолетах, об остановившихся по вине сотовых телефонов реакторах атомных электростанций и т.д. В подавляющем большинстве случаев документального подтверждения такие «новости» не находят.

В самом деле частоты сотовой связи относятся к тому виду электромагнитно­го излучения, которое легко поглощается тканями наших рук, головы и головного мозга. Исследования показали, что до 60 % энергии излучения сотового телефона поглощается тканями головы человека. Правда, только часть энергии СВЧ-излучения попадает вглубь головы. Большая часть поглощается кожей и костями черепа.

Между тем никаких официальных данных о каком-либо влиянии излучения сотовых телефонов на организм человека нет. И не потому, что соответствующие исследования не проводились. А потому, что нормы на мощность излучения на­много меньше тех норм, которые были установлены для людей соответствующи­ми инстанциями.

Степень поглощения энергии электромагнитного излучения организмом чело­века является величина SAR (Specific Absorption Rates). Она выражается в энер­гии поглощенного излучения на единицу массы (г или кг) биоткани. При этом за 20 минут воздействия ткань нагревается на 1 °С.

Нетрудно понять, что такой чисто «термодинамический» подход отнюдь не способствует успокоению людей. Ибо не надо обладать обширными медицински­ми познаниями, чтобы считать, что действие излучения сводится отнюдь не толь­ко к нагреву тканей организма. Нельзя не учитывать, что на генетическом уровне куда менее мощное излучение способно вызвать нарушение клеточной структуры тела или повреждение генов. Поэтому, в Европе, к примеру, установлена норма SAR в 2 мВт /г.

Между прочим, есть простой способ кардинально ослабить степень воздейст­вия радиоизлучения мобильных телефонов на организм человека, и прежде всего на его голову. Это применение специальной гарнитуры hands free (свободные руки). Эта гарнитура представляет собой закрепляемый на голове наушник и микрофон, а также пульт управления радиотелефоном. Сам телефон может быть установлен в отдалении. Возможно подключение к нему и внешней антенны, ко­торая может быть установлена за окном или даже на крыше автомобиля.

Кстати, из всех видов опасности, связанной с сотовыми телефонами, на пер­вом месте стоит отвлечение пользователя от своей основной работы. Например, весьма часты автомобильные аварии, связанные с тем, что водитель во время езды берет телефон в руки, и особенно когда он набирает номер. Во многих стра­нах, включая и Россию, это запрещено и преследуется штрафами. Гарнитура hands free и голосовое управление телефоном - вот основные средства против этого фактора.

Контрольные вопросы

1. Назовите типовые блоки абонентской мобильной станции?

2. Раскажите устройство и основное назначение узлов аналогового мобильного телефона?

3. Раскажите устройство и основное назначение узлов цифрового мобильного телефона?

4. Дайте определение «фрод» и чем он опасен?

5. Перечислите основные меры, направленные на снижения влияния излучения сотовой связи на организм человека?

6. Основные симптомы проявления болезни обусловленной радиоизлучением?

7. Перечислите основные услуги предоставляемой сотовой связью?

8. Как обеспечивается конфиденциальность связи в мобильных сетях?


Связь мобильных, или, как их еще называют, сотовых, телефонов осуществляется не при помощи проводов, как в обычной телефонной системе, а посредством радиоволн. Чтобы позвонить по мобильному телефону, необходимо как обычно набрать номер. Тем самым радиопослание поступает на базовую станцию, управляемую сотовой телефонной компанией.

На станции, которая обслуживает все звонки в пределах данного радиуса или зоны, контроллерное устройство определяет звонок в свободный радиоканал. Кроме того, оно направляет сигнал в автоматическую телефонную станцию сотовой связи. Считывая специальные коды, передаваемые телефоном,

АТС следит за передвижением автомашины по зоне первой станции. Если во время звонка машина минует зону и оказывается в следующей, звонок автоматически переводится на базовую станцию, действующую в той зоне. При звонке по мобильному телефону звонящий подключается к автоматической телефонной станции для сотовой связи, которая определяет местонахождение мобильного телефона, запрашивает свободный радиоканал у контроллерного устройства цепи и осуществляет связь - через базовую станцию - с нужным номером. Затем мобильный телефон звонит. Когда водитель поднимает трубку, цепь замыкается.

Работа базовой станции

Каждая базовая станция принимает сигналы, испускаемые в радиусе от трех до шести миль. Чтобы избежать шумов, базовые станции с совпадающими границами должны работать на различных частотных каналах. Но даже в пределах одного города достаточно удаленные друг от друга станции могут без труда работать на одном канале.

Местная телефонная система, которая обслуживает и дома и офисы, основана на проводах, тянущихся под и над землей и подсоединенных к автоматической станции.

Местонахождение и канал

Автоматическая телефонная станция определяет местоположение движущегося транспортного средства, в то время как контроллер цепи направляет звонок в коммуникационный канал.

Область звонка

Когда автомобиль выезжает за пределы зоны самой удаленной базовой станции, водитель больше не может пользоваться сотовой связью. Если звонок сделан на пути к границе зоны, сигнал становится все слабее и слабее и в конце концов совсем исчезает.

На пути от станции к станции

На всем протяжении мобильного звонка автоматическая телефонная станция для сотовой связи фиксирует местонахождение движущегося автомобиля по силе исходящих от него радиосигналов. Когда сигнал становится слишком слабым, автоматическая телефонная станция предупреждает базовую станцию, которая, в свою очередь, передает звонок для обслуживания соседней станции.

Мобильная связь - это радиосвязь между абонентами, местоположение одного или нескольких из которых меняется. Одним из видов мобильной связи является сотовая связь.

Сотовая связь - один из видов радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность: общая зона покрытия делится на соты, определяющиеся зонами покрытия базовых станций . Соты перекрываются и вместе образуют сеть. На идеальной поверхности зона покрытия одной базовой станции представляет собой круг, поэтому составленная из них сеть имеет вид сот с шестиугольными ячейками .

Принцип действия сотовой связи

Итак, для начала рассмотрим, как осуществляется звонок по мобильному телефону. Лишь только пользователь набирает номер, телефонная трубка (HS - Hand Set) начинает поиск ближайшей базовой станции (BS - Base Station) - приемопередающее, управляющее и коммуникационное оборудование, составляющее сеть. В ее состав входят контроллер базовой станции (BSC - Base Station Controller) и несколько ретрансляторов (BTS - Base Transceiver Station). Базовые станции управляются мобильным коммутирующим центром (MSC - Mobile Service Center). Благодаря сотовой структуре, ретрансляторы покрывают местность зоной уверенного приема в одном или нескольких радиоканалах с дополнительным служебным каналом, по которому происходит синхронизация. Точнее происходит согласование протокола обмена аппарата и базовой станции по аналогии с процедурой модемной синхронизации (handshacking), в процессе которого устройства договариваются о скорости передачи, канале и т.д. Когда мобильный аппарат находит базовую станцию и происходит синхронизация, контроллер базовой станции формирует полнодуплексный канал на мобильный коммутирующий центр через фиксированную сеть. Центр передает информацию о мобильном терминале в четыре регистра: посетительский регистр подвижных абонентов или "гостей" (VLR - Visitor Layer Register), "домашний" регистр местных подвижных абонентов (HRL - Home Register Layer), регистр подписчика или аутентификации (AUC - AUthentiCator) и регистр идентификации оборудования (EIR - Equipment Identification Register). Эта информация уникальна и находится в пластиковой абонентской микроэлектронной телекарточке или модуле (SIM - Subscriber Identity Module) , по которому производятся проверка правомочности абонента и тарификация. В отличие от стационарных телефонов, за пользование которыми плата взимается в зависимости от нагрузки (числа занятых каналов), поступающей по фиксированной абонентской линии, плата за пользование подвижной связью взимается не с используемого телефонного аппарата, а с SIM-карты, которую можно вставить в любой аппарат.


Карточка представляет собой не что иное, как обычный флэш-чип, выполненный по смарт-технологии (SmartVoltage) и имеющий необходимый внешний интерфейс. Его можно использовать в любых аппаратах, и главное - чтобы совпадало рабочее напряжение: ранние версии использовали 5.5В интерфейс, а у современных карт обычно 3.3В. Информация хранится в стандарте уникального международного идентификатора абонента (IMSI - International Mobile Subscriber Identification), благодаря чему исключается возможность появления "двойников" - даже если код карты будет случайно подобран, система автоматически исключит фальшивый SIM, и не придется в последствии оплачивать чужие разговоры. При разработке стандарта протокола сотовой связи этот момент был изначально учтен, и теперь каждый абонент имеет свой уникальный и единственный в мире идентификационный номер, кодирующийся при передаче 64бит ключом. Кроме этого, по аналогии со скремблерами, предназначенными для шифрования/дешифрования разговора в аналоговой телефонии, в сотовой связи применяется 56бит кодирование.

На основании этих данных формируется представление системы о мобильном пользователе (его местоположение, статус в сети и т. д.) и происходит соединение. Если мобильный пользователь во время разговора перемещается из зоны действия одного ретранслятора в зону действия другого, или даже между зонами действия разных контроллеров, связь не обрывается и не ухудшается, поскольку система автоматически выбирает ту базовую станцию, с которой связь лучше. В зависимости от загруженности каналов телефон выбирает между сетью 900 и 1800 МГц, причем переключение возможно даже во время разговора абсолютно незаметно для говорящего.

Звонок из обычной телефонной сети мобильному пользователю осуществляется в обратной последовательности: сначала определяются местоположение и статус абонента на основании постоянно обновляющихся данных в регистрах, а затем происходят соединение и поддержание связи.

Системы подвижной радиосвязи строятся по схеме "точка-многоточие" (point-multipoint), поскольку абонент может находиться в любой точке соты, контролируемой базовой станцией. В простейшем случае круговой передачи мощность радиосигнала в свободном пространстве теоретически уменьшается обратно пропорционально квадрату расстояния. Однако на практике сигнал затухает гораздо быстрее - в лучшем случае пропорционально кубу расстояния, поскольку энергия сигнала может поглощаться или уменьшаться на различных физических препятствиях, и характер таких процессов сильно зависит от частоты передачи. При уменьшении мощности на порядок охватываемая площадь соты уменьшается на два порядка.

"ФИЗИОЛОГИЯ"

Важнейшими причинами повышенного затухания сигналов являются теневые зоны, создаваемые зданиями или естественными возвышенностями на местности. Исследования условий применения подвижной радиосвязи в городах показали, что даже на очень близких расстояниях теневые зоны дают затухание до 20дБ. Другой важной причиной затухания является листва деревьев. Например, на частоте 836МГц в летнее время, когда деревья покрыты листвой, уровень принимаемого сигнала оказывается приблизительно на 10дБ ниже, чем в том же месте зимой, при отсутствии листьев. Замирания сигналов от теневых зон иногда называют медленными с точки зрения условий их приема в движении при пересечении такой зоны.

Важное явление, которое приходится учитывать при создании сотовых систем подвижной радиосвязи - отражение радиоволн, и, как следствие, их многолучевое распространение. С одной стороны, это явление полезно, так как оно позволяет радиоволнам огибать препятствия и распространяться за зданиями, в подземных гаражах и тоннелях. Но с другой стороны, многолучевое распространение порождает такие трудные для радиосвязи проблемы, как растягивание задержки сигнала, релеевские замирания и усугубление эффекта Доплера.

Растягивание задержки сигнала получается из-за того, что сигнал, проходящий по нескольким независимым путям разной протяженности, принимается несколько раз. Поэтому повторяющийся импульс может выйти за пределы отведенного для него интервала времени и исказить следующий символ. Искажения, возникающие за счет растянутой задержки, называются межсимвольной интерференцией. При небольших расстояниях растянутая задержка не опасна, но если соту окружают горы, задержка может растянуться на многие микросекунды (иногда 50-100 мкс).

Релеевские замирания вызываются случайными фазами, с которыми поступают отраженные сигналы. Если, например, прямой и отраженный сигналы принимаются и противофазе (со сдвигом фазы на 180°), то суммарный сигнал может быть ослаблен почти до нуля. Релеевские замирания для данного передатчика и заданной частоты представляют собой нечто вроде амплитудных "провалов", имеющих разную глубину и распределенных случайным образом. В этом случае при стационарном приемнике избежать замираний можно просто переставив антенну. При движении же транспортного средства такие "провалы" проходятся ежесекундно тысячами, отчего происходящие при этом замирания называются быстрыми.

Эффект Доплера проявляется при движении приемника относительно передатчика и состоит в изменении частоты принимаемого колебания. Подобно тому, как тон шума движущегося поезда или автомобиля кажется неподвижному наблюдателю несколько выше при приближении транспортного средства и несколько ниже при его удалении, частота радиопередачи смещается при движении приемопередатчика. Более того, при многолучевом распространении сигнала отдельные лучи могут давать смещение частоты в ту или другую сторону одновременно. В результате, за счет эффекта Доплера получается случайная частотная модуляция передаваемого сигнала подобно тому, как за счет релеевских замираний происходит случайная амплитудная модуляция. Таким образом, в целом многолучевое распространение создает большие трудности в организации сотовой связи, в особенности для подвижных абонентов, что связано с медленными и быстрыми замираниями амплитуды сигнала в движущемся приемнике. Преодолеть эти трудности удалось с помощью цифровой техники, которая позволила создать новые методы кодирования, модуляции и выравнивания характеристик каналов.

"АНАТОМИЯ"

Передача данных осуществляется по радиоканалам. Сеть GSM работает в диапазонах частот 900 или 1800 МГц. Более конкретно, например, в случае рассмотрения диапазона 900МГц подвижной абонентский аппарат передает на одной из частот, лежащих в диапазоне 890-915 МГц, а принимает на частоте, лежащей в диапазоне 935-960 МГц. Для других частот принцип тот же, изменяются только численные характеристики.

По аналогии со спутниковыми каналами направление передачи от абонентского аппарата к базовой станции называется восходящим (Rise), а направление от базовой станции к абонентскому аппарату - нисходящим (Fall). В дуплексном канале, состоящем из восходящего и нисходящего направлений передачи, для каждого из названных направлений применяются частоты, различающиеся точно на 45МГц. В каждом из указанных выше частотных диапазонов создаются по 124 радиоканала (124 для приема и 124 для передачи данных, разнесенных на 45МГц) шириной по 200кГц каждый. Этим каналам присваиваются номера (N) от 0 до 123. Тогда частоты восходящего (F R) и нисходящего (F F) направлений каждого из каналов можно вычислить по формулам: F R (N) = 890+0.2N (МГц), F F (N) = F R (N) + 45 (МГц).

В распоряжение каждой базовой станции может быть предоставлено от одной до 16 частот, причем число частот и мощность передачи определяются в зависимости от местных условий и нагрузки.

В каждом из частотных каналов, которому присвоен номер (N) и который занимает полосу 200кГц, организуются восемь каналов с временным разделением (временные каналы с номерами от 0 до 7), или восемь канальных интервалов.

Система с разделением частот (FDMA) позволяет получить 8 каналов по 25кГц, которые, в свою очередь, разделяются по принципу системы с разделением времени (TDMA) еще на 8 каналов. В GSM используется GMSK-модуляция, а несущая частота изменяется 217 раз в секунду для того, чтобы компенсировать возможное ухудшение качества.

Когда абонент получает канал, ему выделяется не только частотный канал, но и один из конкретных канальных интервалов, и он должен вести передачу в строго отведенном временном интервале, не выходя за его пределы - иначе будут создаваться помехи в других каналах. В соответствии с вышеизложенным работа передатчика происходит в виде отдельных импульсов, которые происходят в строго отведенном канальном интервале: продолжительность канального интервала составляет 577мкс, а всего цикла - 4616мкс. Выделение абоненту только одного из восьми канальных интервалов позволяет разделить во времени процесс передачи и приема путем сдвига канальных интервалов, выделяемых передатчикам подвижного аппарата и базовой станции. Базовая станция (BS) всегда передает на три канальных интервала раньше подвижного аппарата (HS).

Требования к характеристикам стандартного импульса описываются в виде нормативного шаблона изменения мощности излучения во времени. Процессы включения и выключения импульса, которые сопровождаются изменением мощности на 70дБ, должны укладываться в промежуток времени длительностью всего 28мкс, а рабочее время, в течение которого передаются 147 двоичных разрядов, составляет 542.8мкс. Значения мощности передачи, указанные в таблице ранее, относятся именно к мощности импульса. Средняя же мощность передатчика оказывается в восемь раз меньше, так как 7/8 времени передатчик не излучает.

Рассмотрим формат нормального стандартного импульса. Из него видно, что не все разряды несут полезную информацию: здесь в середине импульса располагается обучающая последовательность из 26 двоичных разрядов для защиты сигнала от помех многолучевого распространения. Это - одна из восьми специальных легко распознаваемых последовательностей, по которой принятые разряды правильно располагаются во времени. Такая последовательность ограждается одноразрядными указателями (PB - Point Bit), а с обеих сторон этой настроечной последовательности располагается полезная кодированная информация в виде двух блоков по 57 двоичных разрядов, ограждаемых, в свою очередь, граничными разрядами (BB - Border Bit) - по 3бит с каждой стороны. Таким образом, импульс переносит 148бит данных, которые занимают 546.12мкс временной интервал. К этому времени добавляется еще промежуток, равный 30.44мкс защитного времени (ST - Shield Time), в течение которого передатчик "молчит". По продолжительности этот промежуток соответствует времени передачи 8.25 разряда, но передачи в это время не происходит.

Последовательность импульсов образует физический канал передачи, который характеризуется номером частоты и номером временного канального интервала. На основе этой последовательности импульсов организуется целая серия логических каналов, которые различаются своими функциями. Кроме каналов, передающих полезную информацию, существует еще ряд каналов, передающих сигналы управления. Реализация таких каналов и их работа требуют четкого управления, которое реализуется программными средствами.


Сотовая связь считается одним из самых полезных изобретений человечества - наряду с колесом, электричеством, интернетом и компьютером. И лишь за несколько десятилетий эта технология пережила целый ряд революций. С чего начиналось беспроводное общение, как работают соты и какие возможности откроет новый мобильный стандарт 5G?

Первое использование подвижной телефонной радиосвязи относится к 1921 году - тогда в США полиция Детройта использовала одностороннюю диспетчерскую связь в диапазоне 2 МГц для передачи информации от центрального передатчика к приемникам в автомобилях полицейских.

Как появилась сотовая связь

Впервые идея сотовой связи была выдвинута в 1947 году - над ней работали инженеры из Bell Labs Дуглас Ринг и Рэй Янг. Однако реальные перспективы ее воплощения стали вырисовываться только к началу 1970-х годов, когда сотрудники компании разработали рабочую архитектуру аппаратной платформы сотовой связи.

Так, американские инженеры предложили размещать передающие станции не в центре, а по углам «ячеек», а чуть позже была придумана технология, позволяющая абонентам передвигаться между этими «сотами», не прерывая связи. После этого осталось разработать действующее оборудование для такой технологии.

Задачу успешно решила компания Motorola - ее инженер Мартин Купер 3 апреля 1973 года продемонстрировал первый работающий прототип мобильного телефона. Он позвонил начальнику исследовательского отдела компании-конкурента прямо с улицы и рассказал ему о собственных успехах.

Руководство Motorola немедленно вложило в перспективный проект 100 миллионов долларов, однако на коммерческий рынок технология вышла только через десять лет. Такая задержка связана с тем, что сначала требовалось создать глобальную инфраструктуру базовых станций сотовой связи.


На территории США этой работой занялась компания AT&T - телекоммуникационный гигант добился от федерального правительства лицензирования нужных частот и построил первую сотовую сеть, которая охватила крупнейшие американские города. В качестве первого мобильника выступила знаменитая модель Motorola DynaTAC 8000.

В продажу первый сотовый телефон поступил 6 марта 1983 года. Он весил почти 800 граммов, мог работать на одном заряде 30 минут в режиме разговора и заряжался около 10 часов. При этом аппарат стоил 3995 долларов - баснословную сумму по тем временам. Несмотря на это, мобильник мгновенно стал популярен.

Почему связь называется сотовой

Принцип мобильной связи прост - территория, на которой обеспечивается соединение абонентов, разбивается на отдельные ячейки или «соты», каждую из которых обслуживает базовая станция. При этом в каждой «соте» абонент получает идентичные услуги, поэтому сам он никак не чувствует пересечения этих виртуальных границ.

Обычно базовая станция в виде пары железных шкафов с оборудованием и антенн размещается на специально построенной вышке, однако в городе их нередко размещают на крышах высотных зданий. В среднем каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров.

Для улучшения качества обслуживания операторы также устанавливают фемтосоты - маломощные и миниатюрные станции сотовой связи, предназначенные для обслуживания небольшой территории. Они позволяют резко улучшить покрытие в тех местах, где это необходимо.Сотовую связь в России объединят с космосом

Находящийся в сети мобильник прослушивает эфир и находит сигнал базовой станции. В современную SIM-карту, кроме процессора и оперативки, вшит уникальный ключ, позволяющий авторизоваться в сотовой сети. Связь телефона со станцией может осуществляться по разным протоколам - например, цифровым DAMPS, CDMA, GSM, UMTS.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Если телефон выходит из поля действия базовой станции, аппарат налаживает связь с другими - установленное абонентом соединение незаметно передается другим «сотам», что обеспечивает непрерывную связь при перемещениях.

В России для вещания сертифицированы три диапазона - 800 МГц, 1800 МГц и 2600 МГц. Диапазон 1800 МГц считается самым популярным в мире, так как сочетает высокую емкость, большой радиус действия и высокую проникающую способность. Именно в нем сейчас работают большинство мобильных сетей.

Какие стандарты мобильной связи бывают

Первые мобильники работали с технологий 1G - это самое первое поколение сотовой связи, которое опиралось на аналоговые телекоммуникационные стандарты, главным из которых стал NMT - Nordic Mobile Telephone. Он предназначался исключительно для передачи голосового трафика.

К 1991 году относят рождение 2G - главным стандартом нового поколения стал GSM (Global System for Mobile Communications). Данный стандарт поддерживается до сих пор. Связь в этом стандарте стала цифровой, появилась возможность шифрования голосового трафика и отправки СМС.

Скорость передачи данных внутри GSM не превышала 9,6 кбит/с, что делало невозможной передачу видео или высококачественного звука. Проблему был призван решить стандарт GPRS, известный как 2.5G. Он впервые позволил пользоваться сетью Интернет владельцам мобильных телефонов.


Такой стандарт уже обеспечил скорость передачи данных до 114 Кбит/c. Однако вскоре он также перестал удовлетворять постоянно растущие запросы пользователей. Для решения этой проблемы в 2000 году был разработан стандарт 3G, который обеспечивал доступ к услугам Сети на скорости передачи данных в 2 Мбита.

Еще одним отличием 3G стало присвоение каждому абоненту IP-адреса, что позволило превратить мобильники в маленькие компьютеры, подключенные к интернету. Первая коммерческая сеть 3G была запущена 1 октября 2001 года в Японии. В дальнейшем пропускная способность стандарта неоднократно увеличивалась.

Наиболее современный стандарт - связь четвертого поколения 4G, которая предназначена только для высокоскоростных сервисов передачи данных. Пропускная способность сети 4G способна достигать 300 Мбит/сек, что дает пользователю практически неограниченные возможности работы в интернете.

Сотовая связь будущего

Стандарт 4G заточен на непрерывную передачу гигабайтов информации, в нем даже отсутствует канал для передачи голоса. За счет чрезвычайно эффективных схем мультиплексирования загрузка фильма высокого разрешения в такой сети займет у пользователя 10-15 минут. Однако даже его возможности уже считаются ограниченными.

В 2020 году ожидается официальный запуск нового поколения связи стандарта 5G, который позволит передачу больших объемов данных на сверхвысоких скоростях до 10 Гбит/сек. Кроме этого, стандарт позволит подключить к высокоскоростному интернету до 100 миллиардов устройств.

Именно 5G позволит появиться настоящему интернету вещей - миллиарды устройств будут обмениваться информацией в реальном времени. По оценке экспертов, сетевой трафик скоро вырастет на 400%. Например, автомобили начнут постоянно находиться в глобальной Сети и получать данные о дорожной обстановке.

Низкая степень задержки обеспечит связь между транспортными средствами и инфраструктурой в режиме реального времени. Ожидается, что надежное и постоянно действующее соединение впервые откроет возможность для запуска на дорогах полностью автономных транспортных средств.

Российские операторы уже экспериментируют с новыми спецификациями - например, работы в этом направлении ведет «Ростелеком». Компания подписала соглашение о строительстве сетей 5G в инновационном центре «Сколково». Реализация проекта входит в государственную программу «Цифровая экономика», недавно утвержденную правительством.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: